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INTRODUCTION 
 
As dye is coloured components or pigments, it is easily to 
contaminate the water. With a very small amount of dye in water 
in range of 10 mg/L to 50 mg/L, it is quietly visible and affects 
the water transparency, aesthetic value,  and gas solubility of 
water bodies [1]. It also prevents the effective light penetration 
into the aquatic system and disrupt the development of aquatic 
life. Basic dyes, due to their triphenylmethane structure, are 
extremely toxic to fish and other aquatic organisms. There are 
many beneficial microorganisms that can decolorize 
triphenylmethane dyes, and this ability has been known for 
decades. Crystal violet, or basic violet 3 (Gentian Violet or 
Methyl Violet 10B), is a type of dye made from 
triphenylmethane.  
 

The dye has a number of histology applications, including Gram 
staining for bacterial identification. Crystal violet is a safe 
alternative to fluorescent, intercalating dyes like ethidium 
bromide for staining DNA during DNA gel electrophoresis. It 
can be used either by adding it to the agarose gel before 
electrophoresis or by applying it to the gel afterward. When used 
at a concentration of 0.001% and allowed to stain a gel for 30 
minutes following electrophoresis, it is sensitive enough to detect 
DNA at concentrations as low as 16 ng. Sensitivity can be 
increased to 8 ng of DNA by the use of a methyl orange 
counterstain and a more intricate staining procedure. Crystal 
violet has become a popular alternative to fluorescent stains 
because it allows DNA cloning to be performed in vitro without 
the need for ultraviolet irradiation, which can cause DNA damage 
[2,3]. 
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 ABSTRACT 
Synthetic dyes are abundantly used in recent years and mainly consumed in the textile, 
pharmaceutical, plastic and cosmetic industries. The release of toxic constituents from dyes give 
adverse effect on human health and marine life. In textile industries, large amount of dye 
discharged into the wastewater and eventually to the aquatic system are mainly came from the 
critical step of dyeing and finishing processes in textile. The be able to precisely forecast the rate 
of bioremediation, depends on the gathering of precise rate of decolourisation, and this can be 
inaccurately acquired by natural logarithm transformation of the decolourisation process over 
time. In cases like this, a nonlinear regression of the curve must be performed making use of 
accessible rate models. Consequently, numerous primary models for example modified Logistic, 
modified Gompertz, modified logistics, modified Richards, modified Schnute, Baranyi-Roberts, 
Buchanan-3-phase, von Bertalanffy and the Huang models were utilized to fit the specific 
decolourisation rate. Several models did not converge and was disregarded and only Huang, 
Baranyi-Roberts, modified Gompertz, modified Richards and modified Logistics could actually 
model the data. The very best model according to statistical analysis was Baranyi Roberts with 
the highest value for Adjusted Coefficient of Determination and the lowest values for RMSE, 
AICc, HQC and BIC and the closest value to 1.0 for accuracy and bias factors. The Baranyi-
Roberts fitted curve was discovered to conform to normality tests and is satisfactory to be used 
to fit the experimental data. The parameters extracted from this exercise may be used for 
additional secondary modelling training to gleam information about how substrate (dye) impact 
the rate of decolourisation of the substrate. 
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As a commercial textile dye, its use is extensive. It is a xenobiotic 
compound that resists biodegradation, so it stays in the 
environment for a longer period of time. Water takes on a violet 
hue even at low concentrations thanks to a stubborn molecule 
called basic violet 3. For this reason, the violet-colored waste 
products of its production or consumption cannot be released into 
the environment. The fact that Basic violet 3 is a mutagen, a 
mitotic poison, and a potent clastogen raises further concerns 
about its role in promoting tumor growth in certain fish species 
[4]. Basic violet 3 has been shown to cause cancer in rodents and 
mice [5,6]. As a result, basic violet 3 bioaccumulation raises 
concerns for both ecosystems and animal populations. 
 

Adsorption, physical precipitation and flocculation,  reverse 
assimilation, compound oxidation and reduction, 
electrochemical treatment, photolysis, accelerated oxidation, and 
substance corruption are just some of the processes that have 
been considered for the elimination of Basic violet 3 from 
wastewater. Bioremediation is a low-cost approach, has low 
environmental impact, and low sludge production, microbes have 
garnered a lot of support for their use in decolorizing and 
degrading dyes and pigments. There is now a lot of research 
going on to figure out what kind of microbial biomass is the most 
successful and cost-effective at getting rid of dyes from vast 
quantities of polluted water [7]. 
 

Biological decolorization has been studied as a means to 
alter, degrade, or mineralize colors throughout the past few 
decades. Decolorization and degradation methods like this offer 
an inexpensive and environmentally friendly substitute to 
chemical decomposition operations. The treatment of various 
natural effluents and color effluents through biodegradation is a 
notable breakthrough in wastewater management. To understand 
the degradation mechanism in these organisms, precise 
assignment of degradation kinetics and modeling are urgently 
required.  

 
The use of a linearized version of a curve that is obviously 

nonlinear is widely documented in the literature. The drawback 
is that it is more difficult to quantify uncertainty, which is 
commonly expressed as a 95% confidence interval, when 
nonlinear data is translated into a linear format since the error 
structure of the data is changed [8]. The main objective of this 
research is to model the degradation or the declourization of 
Basic Violet 3 dye using non-linear regression models which 
include modified Gompertz, modified Logistic, modified 
Richards, Baranyi-Roberts, modified Schnute, von Bertalanffy 
and the Huang models. A more accurate parameters of the 
decolourization process can be obtained using the best model.  
 
MATERIALS AND METHODS 
 
Data acqusition 
Data was obtained from a published work [9] from Figure 1 and 
were electronically processed and redrawn using the software 
WebPlotDigitizer 2.5 [10] which aids in the accurate and reliable 
digitization of scanned plots into tables of data [11,12].  
 
Fitting of the data 
In this research, we used CurveExpert Professional (Version 1.6), 
software that minimizes the sums of squares of the differences 
between predicted and measured values. The program employs a 
Marquardt algorithm (Table 1).  
 
 
 
 

Table 1. Mathematical models governing decolorization rate used in this 
study. 
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Note: 
A= Decolorization lower asymptote; 
µm= maximum specific decolorizarion rate; 
v= affects near which asymptote maximum decolorization occurs. 
λ=lag time 
ymax= Decolorization upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
The lag time (h-1) or (d-1) can be calculated as h0=qmax 
 
Statistical analysis 
Extensive error function analyses were utilized in this study and 
include Root-mean-square error (RMSE), and Ross’s bias factor 
(BF), and accuracy factor (AF) and adjusted coefficient of 
determination (adjR2)  [13]. The rootmean-square error or RMSE 
was calculated according to Eq. 1; 
 
The RMSE was calculated as folows,  
 

    (Eqn. 1) 
Where, 
 
n  number of experimental data  
Pdi   predicted values by the model  
Obi  experimental data 
p   parameters number of the model 
 

As general rule, those model that has smaller number of 
parameter corresponds in smaller RMSE value [14]. Determining 
R2, also known as the coefficient of determination, because it 
does not take into account the number of parameters of models, 
an alternative approach is to use an adjusted form of R2 that has 
been modified to account for the large number of model 
parameters (Eqns. 2 and 3) of which it is used to work out the 
quality of nonlinear models according to the formula below; 
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    (Eqn. 2) 
 

   (Eqn. 3) 
Where,  
 
 𝑠𝑠𝑦𝑦2 is the total variance of the y-variable and RMS is the Residual 
Mean Square  
 

Information theory forms the basis of the Akaike 
information criterion (AIC). The method uses a minimal AIC 
value as its criterion of choice. In many cases, this value is 
undesirable; for instance, an AICc value of -10 is preferred to a 
main value of -1. The formula takes into account a variable 
penalty, with a higher AIC value indicating a less parsimonious 
model the more variables there are. When fitting experimental 
data, AIC warns against employing more intricate models. When 
the number of parameters in a study is low, researchers often turn 
to a modified version of AIC called corrected AICc. [15]. AICc 
is calculated using the following equation (Eqn. 4); 
 

 (Eqn. 4) 
 
Where,   
n  number of data points   
p  parameter numbers of the model 
 

When calculating AICc, the degree to which a model has 
changed is taken into account. The model also accounts for the 
fact that different models have different numbers of parameters. 
Models with smaller AICc values are more likely to be correct 
when trying to interpret the results [16]. Accuracy Factor (AF) 
and Bias Factor (BF) (Eqns. 5 and 6) are another goodness-of-fit 
of models adapted from prevalent use in predicted microbiology 
for bacterial growth in food science [17]. A perfect correlation 
between experimental and predicted values is determined by the 
statistics. A fail-safe model has a BF greater than 1.0, while a 
fail-dangerous one has a BF less than 1.0. On the other hand, the 
AF is always less than one, with values close to one predicted by 
the most accurate models. 
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Residual’s assesment of normality (Eqn. 7) was carried out 
using the software GraphPad Prism® 6 (Version 6.0, GraphPad 
Software, Inc., USA). Residual is mathematically represented as 
follows; 
 

     (Eqn. 7) 
 

Where the ith response from a given data set is denoted by yi 
while at each set of the ith observation, the vector for the 
explanatory variables is xi [18]. 
 
RESULT AND DISCUSSION  
 
The specific decolourisation rate was obtained from a primary 
modelling exercise using various models (Figs. 1 to 5), which 
shows visually acceptable fitting. Several models such as failed 

to converge and was omitted. One of the models, the modified 
Gompertz is very popular and has been used to model growth 
curve on xenobiotics including dyes as substrates [19–21]. The 
other models are rarely used in modelling dye degradation or 
decolorization. Only Huang, Baranyi-Roberts, modified 
Gompertz, modified Richards and modified Logistics were able 
to model the data whilst other models failed to converge and were 
omitted. The best model based on statistical analysis was Baranyi 
Roberts. The Baranyi-Roberts model has found numerous utility 
in modelling microorganisms growth in food and other 
applications including biodgredation of toxicants [22–28]. The 
Baranyi-Roberts fitted curve was found to conform to normality 
tests and is adequate to be used to fit the experimental data. The 
model has highest value for Adjusted Coefficient of 
Determination and the lowest values for RMSE, AICc, HQC and 
BIC and the closest value to 1.0 for accuracy and bias factors. 
 

 
 
Fig. 1. Fitting the effect of Basic Violet 4 () dye on the decolurisation 
rate using the modified Gompertz model by Staphylococcus aureus.   
 
 

 
Fig. 2. Fitting the effect of Basic Violet 4 () dye on decolurisation rate 
experimental data with Modified Richards model by Staphylococcus 
aureus.   
  

 
 
Fig. 3. Fitting the effect of Basic Violet 4 () dye on decolurisation rate 
experimental data with Modified Logistics model by Staphylococcus 
aureus.   
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Fig. 4. Fitting the effect of Basic Violet 4 () dye on decolurisation rate 
experimental data with Huong model by Staphylococcus aureus.   
 
 
 

 
 
Fig. 5. Fitting the effect of Basic Violet 4 () dye on decolurisation rate 
experimental data with Baranyi model by Staphylococcus aureus.   
 
Table 2. Statistical analysis of kinetic models. 
 
model p RMSE AdjR2 AICC BF HQC BIC AF 
Huang 4 0.1687 0.995 13.983 1.005 -28.16 -25.69 1.01 
Baranyi-Roberts 4 0.13 0.997 9.888 1.001 -32.25 -29.793 1.008 
Modified  
Gompertz 

3 0.243 0.988 75.523 1.001 -23.15 -20.079 1.013 

Modified Richards 4 0.243 0.988 75.525 1.001 -23.154 -20.077 1.01 
Modified 
Logistics 

3 0.291 0.985 22.749 1.003 -19.394 -16.933 1.016 

 
Note: 
p no of parameter 
SSE  Sums of Squared Errors 
RMSE  Root Mean Squared Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
 

An important aspect of this study is the modelling exercise 
yield important decolourisation rate parameters that can be 
further utilized to gleam on the effect of substrate (dye) to the 
decolourization rate. The normality tests carried out is based on 
the tests of Kolmogorov-Smirnov [29,30], Wilks-Shapiro [31] 
and the D'Agostino-Pearson omnibus K2 test [32] were utilized 
to the residuals from the Baranyi-Roberts model and were found 
to pass the normality tests with p >0.05 for all normality tests 
carried out [18]. 
 

The modelling on the effect of time on decoulorisation is 
rarely reported in the literature where researchers often 
transforming the decolourisation profile into a linear form to 
obtain the specific decolourization rate [33]. Hence the best 

model in this study— the Baranyi-roberts model being the best 
model to fit the nonlinear curves of dye decolourisation is novel 
to the best of our knowledge. Transforming an otherwise 
nonlinear curve into a linearized form disrupt the error structure 
and must be avoided [16]. In addition, the use of mathematical 
models allow another important parameter; the lag time to be 
obtained [34]. Often growth on toxic xeobiotics including dye at 
high concentration increases the lag period as the cells try to 
offset the toxicity through various intrinsic mechanisms such as 
pumping, producing metabolites that can sequester the 
xenobiotics or often enzymes that can degrade the xenobiotics 
[35–40]. All of these activities require expenditure of energy that 
is translated as an increase in lag period [41]. The results will be 
very important for future bioremediation works carried out in the 
field.  
 
CONCLUSION 
 
Numerous primary models for example modified Logistic, 
modified Gompertz, modified logistics, modified Richards, 
modified Schnute, Baranyi-Roberts, Buchanan-3-phase, von 
Bertalanffy and the Huang models were utilized to fit the specific 
decolourisation rate of Basic Violet 3 by a bacterium. Of these 
models some did not converge and was disregarded and only 
Huang, Baranyi-Roberts, modified Gompertz, modified Richards 
and modified Logistics could actually model the data. The very 
best model according to statistical analysis was Baranyi Roberts 
with the highest value for adjusted coefficient of determination 
and the lowest values for RMSE, AICc, HQC and BIC and the 
closest value to 1.0 for accuracy and bias factors. The fitted curve 
from the Baranyi-Roberts model conform to normality tests. 
Current works include secondary modelling training to gather 
info on how the concentration of the substrate (dye) inhibits the 
rate of decolourisation of the substrate. 
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