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HISTORY ABSTRACT

Synthetic dyes are abundantly used in recent years and mainly consumed in the textile,
pharmaceutical, plastic and cosmetic industries. The release of toxic constituents from dyes give
adverse effect on human health and marine life. In textile industries, large amount of dye
discharged into the wastewater and eventually to the aquatic system are mainly came from the
critical step of dyeing and finishing processes in textile. The be able to precisely forecast the rate
of bioremediation, depends on the gathering of precise rate of decolourisation, and this can be
inaccurately acquired by natural logarithm transformation of the decolourisation process over
time. In cases like this, a nonlinear regression of the curve must be performed making use of
accessible rate models. Consequently, numerous primary models for example modified Logistic,
modified Gompertz, modified logistics, modified Richards, modified Schnute, Baranyi-Roberts,
Buchanan-3-phase, von Bertalanffy and the Huang models were utilized to fit the specific
decolourisation rate. Several models did not converge and was disregarded and only Huang,
Baranyi-Roberts, modified Gompertz, modified Richards and modified Logistics could actually
model the data. The very best model according to statistical analysis was Baranyi Roberts with
the highest value for Adjusted Coefficient of Determination and the lowest values for RMSE,
AlICc, HQC and BIC and the closest value to 1.0 for accuracy and bias factors. The Baranyi-
Roberts fitted curve was discovered to conform to normality tests and is satisfactory to be used
to fit the experimental data. The parameters extracted from this exercise may be used for
additional secondary modelling training to gleam information about how substrate (dye) impact
the rate of decolourisation of the substrate.
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INTRODUCTION The dye has a number of histology applications, including Gram
staining for bacterial identification. Crystal violet is a safe
alternative to fluorescent, intercalating dyes like ethidium

bromide for staining DNA during DNA gel electrophoresis. It

As dye is coloured components or pigments, it is easily to
contaminate the water. With a very small amount of dye in water

in range of 10 mg/L to 50 mg/L, it is quietly visible and affects
the water transparency, aesthetic value, and gas solubility of
water bodies [1]. It also prevents the effective light penetration
into the aquatic system and disrupt the development of aquatic
life. Basic dyes, due to their triphenylmethane structure, are
extremely toxic to fish and other aquatic organisms. There are
many beneficial microorganisms that can decolorize
triphenylmethane dyes, and this ability has been known for
decades. Crystal violet, or basic violet 3 (Gentian Violet or
Methyl Violet 10B), is a type of dye made from
triphenylmethane.

can be used either by adding it to the agarose gel before
electrophoresis or by applying it to the gel afterward. When used
at a concentration of 0.001% and allowed to stain a gel for 30
minutes following electrophoresis, it is sensitive enough to detect
DNA at concentrations as low as 16 ng. Sensitivity can be
increased to 8 ng of DNA by the use of a methyl orange
counterstain and a more intricate staining procedure. Crystal
violet has become a popular alternative to fluorescent stains
because it allows DNA cloning to be performed in vitro without
the need for ultraviolet irradiation, which can cause DNA damage
[2,3].
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As a commercial textile dye, its use is extensive. It is a xenobiotic
compound that resists biodegradation, so it stays in the
environment for a longer period of time. Water takes on a violet
hue even at low concentrations thanks to a stubborn molecule
called basic violet 3. For this reason, the violet-colored waste
products of its production or consumption cannot be released into
the environment. The fact that Basic violet 3 is a mutagen, a
mitotic poison, and a potent clastogen raises further concerns
about its role in promoting tumor growth in certain fish species
[4]. Basic violet 3 has been shown to cause cancer in rodents and
mice [5,6]. As a result, basic violet 3 bioaccumulation raises
concerns for both ecosystems and animal populations.

Adsorption, physical precipitation and flocculation, reverse
assimilation, compound oxidation and reduction,
electrochemical treatment, photolysis, accelerated oxidation, and
substance corruption are just some of the processes that have
been considered for the elimination of Basic violet 3 from
wastewater. Bioremediation is a low-cost approach, has low
environmental impact, and low sludge production, microbes have
garnered a lot of support for their use in decolorizing and
degrading dyes and pigments. There is now a lot of research
going on to figure out what kind of microbial biomass is the most
successful and cost-effective at getting rid of dyes from vast
quantities of polluted water [7].

Biological decolorization has been studied as a means to
alter, degrade, or mineralize colors throughout the past few
decades. Decolorization and degradation methods like this offer
an inexpensive and environmentally friendly substitute to
chemical decomposition operations. The treatment of various
natural effluents and color effluents through biodegradation is a
notable breakthrough in wastewater management. To understand
the degradation mechanism in these organisms, precise
assignment of degradation kinetics and modeling are urgently
required.

The use of a linearized version of a curve that is obviously
nonlinear is widely documented in the literature. The drawback
is that it is more difficult to quantify uncertainty, which is
commonly expressed as a 95% confidence interval, when
nonlinear data is translated into a linear format since the error
structure of the data is changed [8]. The main objective of this
research is to model the degradation or the declourization of
Basic Violet 3 dye using non-linear regression models which
include modified Gompertz, modified Logistic, modified
Richards, Baranyi-Roberts, modified Schnute, von Bertalanffy
and the Huang models. A more accurate parameters of the
decolourization process can be obtained using the best model.

MATERIALS AND METHODS

Data acqusition

Data was obtained from a published work [9] from Figure 1 and
were electronically processed and redrawn using the software
WebPlotDigitizer 2.5 [10] which aids in the accurate and reliable
digitization of scanned plots into tables of data [11,12].

Fitting of the data

In this research, we used CurveExpert Professional (Version 1.6),
software that minimizes the sums of squares of the differences
between predicted and measured values. The program employs a
Marquardt algorithm (Table 1).

Table 1. Mathematical models governing decolorization rate used in this
study.

Model p Equation
Modified 3 A
Logistic

y:47
{1 + exp[%(lﬂ‘) + 2}}

Modified 3 V= Aexp{— exp{q'f (A-1)+ 1}
Gompertz

)

1
v

y= A{H vexp(l+ v)cxp{%(l +v)[l+ )(171)}}

Modified 4
Richards
1
Modified 4 y=(qm (l—ﬁ))[l—ﬁexp(a/brl—ﬂ—at)}/’
Schnute a -8
Baranyi-
Roberts 4
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Huang 4 Lt
a 1+e™
Y =A,IF X <LAG

Buchanan 3

Y=A + K(X-L), IF A < X > Xpax
Three-phase Y = Ymax, IF X > Xiax
linear model
Note:
A= Decolorization lower asymptote;
= maximum specific decolorizarion rate;
v= affects near which asymptote maximum decolorization occurs.
A=lag time
ymax= Decolorization upper asymptote;
e = exponent (2.718281828)
t = sampling time
a,B, k = curve fitting parameters
ho= a dimensionless parameter quantifying the initial physiological state of the reduction process.
The lag time (h') or (d) can be calculated as g=gmax

Statistical analysis

Extensive error function analyses were utilized in this study and
include Root-mean-square error (RMSE), and Ross’s bias factor
(BF), and accuracy factor (AF) and adjusted coefficient of
determination (adjR?) [13]. The rootmean-square error or RMSE
was calculated according to Eq. 1;

The RMSE was calculated as folows,

i(Pd, -ob)
RMSE =1L
n-r (Eqn. 1)
Where,

n number of experimental data
Pd;  predicted values by the model
Ob;  experimental data

P parameters number of the model

As general rule, those model that has smaller number of
parameter corresponds in smaller RMSE value [14]. Determining
R?, also known as the coefficient of determination, because it
does not take into account the number of parameters of models,
an alternative approach is to use an adjusted form of R? that has
been modified to account for the large number of model
parameters (Eqns. 2 and 3) of which it is used to work out the
quality of nonlinear models according to the formula below;
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_ RMS
57 (Eqn. 2)

Adjusted (R2)=1

Adjusted (R2 ): 1 7M

(n-p-1) (Eqn. 3)

Where,

532, is the total variance of the y-variable and RMS is the Residual
Mean Square

Information theory forms the basis of the Akaike
information criterion (AIC). The method uses a minimal AIC
value as its criterion of choice. In many cases, this value is
undesirable; for instance, an AICc value of -10 is preferred to a
main value of -1. The formula takes into account a variable
penalty, with a higher AIC value indicating a less parsimonious
model the more variables there are. When fitting experimental
data, AIC warns against employing more intricate models. When
the number of parameters in a study is low, researchers often turn
to a modified version of AIC called corrected AICc. [15]. AICc
is calculated using the following equation (Eqn. 4);

AICe=2 p+n1n(@)+z( piny 2o kpr2)
! "2 (Eqn.4)

Where,
n number of data points
P parameter numbers of the model

When calculating AICc, the degree to which a model has
changed is taken into account. The model also accounts for the
fact that different models have different numbers of parameters.
Models with smaller AICc values are more likely to be correct
when trying to interpret the results [16]. Accuracy Factor (AF)
and Bias Factor (BF) (Eqns. 5 and 6) are another goodness-of-fit
of models adapted from prevalent use in predicted microbiology
for bacterial growth in food science [17]. A perfect correlation
between experimental and predicted values is determined by the
statistics. A fail-safe model has a BF greater than 1.0, while a
fail-dangerous one has a BF less than 1.0. On the other hand, the
AF is always less than one, with values close to one predicted by
the most accurate models.

[ilog(m’ 108, )]

ol n

Bias factor = 10 (Eqn. 5)

[ilog\(m /O, )\]

= " (Eqn. 6)

Accuracy factor = 10

Residual’s assesment of normality (Eqn. 7) was carried out
using the software GraphPad Prism® 6 (Version 6.0, GraphPad
Software, Inc., USA). Residual is mathematically represented as
follows;

€=Y; _f(x,- :ﬂ) (Eqn. 7)

Where the i response from a given data set is denoted by yi
while at each set of the i observation, the vector for the
explanatory variables is x; [18].

RESULT AND DISCUSSION
The specific decolourisation rate was obtained from a primary

modelling exercise using various models (Figs. 1 to 5), which
shows visually acceptable fitting. Several models such as failed

to converge and was omitted. One of the models, the modified
Gompertz is very popular and has been used to model growth
curve on xenobiotics including dyes as substrates [19-21]. The
other models are rarely used in modelling dye degradation or
decolorization. Only Huang, Baranyi-Roberts, modified
Gompertz, modified Richards and modified Logistics were able
to model the data whilst other models failed to converge and were
omitted. The best model based on statistical analysis was Baranyi
Roberts. The Baranyi-Roberts model has found numerous utility
in modelling microorganisms growth in food and other
applications including biodgredation of toxicants [22-28]. The
Baranyi-Roberts fitted curve was found to conform to normality
tests and is adequate to be used to fit the experimental data. The
model has highest value for Adjusted Coefficient of
Determination and the lowest values for RMSE, AICc, HQC and
BIC and the closest value to 1.0 for accuracy and bias factors.
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Fig. 1. Fitting the effect of Basic Violet 4 (@) dye on the decolurisation
rate using the modified Gompertz model by Staphylococcus aureus.
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Fig. 2. Fitting the effect of Basic Violet 4 (@) dye on decolurisation rate
experimental data with Modified Richards model by Staphylococcus
aureus.
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Fig. 3. Fitting the effect of Basic Violet 4 (@) dye on decolurisation rate
experimental data with Modified Logistics model by Staphylococcus
aureus.
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Fig. 4. Fitting the effect of Basic Violet 4 (@) dye on decolurisation rate
experimental data with Huong model by Staphylococcus aureus.
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Fig. 5. Fitting the effect of Basic Violet 4 (@) dye on decolurisation rate
experimental data with Baranyi model by Staphylococcus aureus.

Table 2. Statistical analysis of kinetic models.

model p RMSE AdjR*> AICC BF HQC BIC AF
Huang 4 0.1687 0.995 13.983 1.005 -28.16 -25.69 1.01
Baranyi-Roberts 4 0.13 0997 9.888 1.001 -32.25 -29.793 1.008
Modified 3 0.243 0.988 75.523 1.001 -23.15 -20.079 1.013
Gompertz

Modified Richards 4 0.243 0.988 75.525 1.001 -23.154 -20.077 1.01
Modified 3 0.291 0.985 22.749 1.003 -19.394 -16.933 1.016
Logistics

Note:

p no of parameter

SSE  Sums of Squared Errors

RMSE Root Mean Squared Error

R? Coefficient of Determination

adR?>  Adjusted Coefficient of Determination
AICC Corrected Akaike Information Criterion
BF Bias Factor

AF  Accuracy Factor

An important aspect of this study is the modelling exercise
yield important decolourisation rate parameters that can be
further utilized to gleam on the effect of substrate (dye) to the
decolourization rate. The normality tests carried out is based on
the tests of Kolmogorov-Smirnov [29,30], Wilks-Shapiro [31]
and the D'Agostino-Pearson omnibus K2 test [32] were utilized
to the residuals from the Baranyi-Roberts model and were found
to pass the normality tests with p >0.05 for all normality tests
carried out [18].

The modelling on the effect of time on decoulorisation is
rarely reported in the literature where researchers often
transforming the decolourisation profile into a linear form to
obtain the specific decolourization rate [33]. Hence the best

model in this study— the Baranyi-roberts model being the best
model to fit the nonlinear curves of dye decolourisation is novel
to the best of our knowledge. Transforming an otherwise
nonlinear curve into a linearized form disrupt the error structure
and must be avoided [16]. In addition, the use of mathematical
models allow another important parameter; the lag time to be
obtained [34]. Often growth on toxic xeobiotics including dye at
high concentration increases the lag period as the cells try to
offset the toxicity through various intrinsic mechanisms such as
pumping, producing metabolites that can sequester the
xenobiotics or often enzymes that can degrade the xenobiotics
[35-40]. All of these activities require expenditure of energy that
is translated as an increase in lag period [41]. The results will be
very important for future bioremediation works carried out in the
field.

CONCLUSION

Numerous primary models for example modified Logistic,
modified Gompertz, modified logistics, modified Richards,
modified Schnute, Baranyi-Roberts, Buchanan-3-phase, von
Bertalanffy and the Huang models were utilized to fit the specific
decolourisation rate of Basic Violet 3 by a bacterium. Of these
models some did not converge and was disregarded and only
Huang, Baranyi-Roberts, modified Gompertz, modified Richards
and modified Logistics could actually model the data. The very
best model according to statistical analysis was Baranyi Roberts
with the highest value for adjusted coefficient of determination
and the lowest values for RMSE, AICc, HQC and BIC and the
closest value to 1.0 for accuracy and bias factors. The fitted curve
from the Baranyi-Roberts model conform to normality tests.
Current works include secondary modelling training to gather
info on how the concentration of the substrate (dye) inhibits the
rate of decolourisation of the substrate.
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