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INTRODUCTION 
 
Malachite green has been widely used in the aquaculture 
industries as a topical treatment through bath or flush methods, 
with little consideration given to the possibility that such 
therapeutants may also be absorbed systemically and produce 
significant internal effects. It is also used as a dye in the silk, 
paper, wool, jute, cotton, leather,  and acrylic industries, as well 
as a food coloring agent, medical disinfectant,  food additive, and 
anthelminthic. In addition to its widespread application in the 
textile industry, Malachite Green (MG), a member of the 
triphenylmethane dye, is used as a fungicide and an 
ectoparasiticide in aquaculture. Even though MG's effects on 
aquatic invertebrates and algae are still being investigated, the 
dye and its derivatives are known to accumulate in aquaculture 
products like fish, prawn, and crab, and are widely reported to be 

toxic to many species of fish at concentrations as low as 1 mg/L. 
It's also carcinogenic and genotoxic, so it could be bad for 
people's health [1–4]. Leucomalachite green, a reduced form of 
malachite green used to treat and prevent fungal and parasitic 
infections, builds up in the tissues of exposed fish. Serum, 
kidney, liver, skin, muscle, and viscera of a wide range of 
experimental animals, including fish, are the primary storage 
sites for this protein [5–7]. 
 

Because of this, many countries have banned the use of this 
dye. This includes the European Union, the United States, and 
others. However, MG is still used in some parts of the world 
because it is highly efficient, cheap, and easily accessible. 
Because it is so accessible, there is concern that it will be used 
illegally. It is used in the United States to treat illnesses in tropical 
fish. It has been suggested that MG is used in Asian countries as 
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 ABSTRACT 
Dyes plays an important role in our everyday life. From manufacturing plastics, paints, textile 
and even pills contain traces of dye used. With the ever-increasing demand for dye with growing 
world populations, the use of synthetic dyes has grown linearly. Bioremediation of dyes using 
microorganisms is on the rise. The ability to accurately predict the rate of bioremediation relies 
upon the gathering of the accurate rate of decolourisation, which is often inaccurately obtained 
by natural logarithm transformation of the decolourisation process over time. In this instance, a 
nonlinear regression of the curve needs to be carried out utilising available rate models. Hence, 
various primary models such as modified Logistic, modified Gompertz, modified logistics, 
modified Richards, modified Schnute, Baranyi-Roberts, Buchanan-3-phase, von Bertalanffy and 
the Huang models were utilized to fit the specific decolourisation rate. Several models failed to 
converge and was omitted and only Huang, Baranyi-Roberts, modified Gompertz, modified 
Richards and modified Logistics were able to model the data while other models failed to 
converge and were omitted. The best model based on statistical analysis was Baranyi Roberts 
with the highest value for Adjusted Coefficient of Determination and the lowest values for 
RMSE, AICc, HQC and BIC and the closest value to 1.0 for accuracy and bias factors. The 
Baranyi-Roberts fitted curve was found to conform to normality tests and is adequate to be used 
to fit the experimental data. The parameters obtained from this exercise can be utilized for further 
secondary modelling exercise to gleam information on how substrate (dye) affect the rate of 
decolourisation of the substrate. 
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a means of treating external parasites and fungal infections in fish 
aquaculture. However, when compared to the removal of other 
contaminants, the removal of MG from aquaculture effluent has 
received little to no attention. Therefore, MG contamination in 
aquaculture effluent is possible, which could have serious 
consequences for the ecosystem [8–11]. There are several 
different forms of malachite green on the market, the most 
common of which is a 50 percent solution of the oxalate or 
hydrochloride salt. Malachite green hydrochloride, an industrial 
grade variety, is precipitated during production as a double zinc 
salt via the addition of zinc chloride. Like other 
triphenylmethanes, this dye has the ability to exist in both the dye 
salt and the carbinol or pseudobase ionic forms. Due to their 
much higher lipid solubility as the pseudobase, these ions are 
likely to enter cells in this form [12].  
 

Bioremediation is the productive use of the biodegradative 
process to remove or detoxify pollutants enter the environment 
and threaten the public health or safety of the environment 
usually as contaminants of soil, water or sediments [13,14]. In 
this context, bioremediation is the use of microorganism to 
degrade, sequester or conjugate environmental pollutants. 
Certain microorganisms have the capability to degrade 
contaminant in the environment, which has been well established 
in dyes field. Over the past decades, the ability of microorganism 
has been investigated as a method to degrade, decolourise, 
transform and total mineralisation of dyes to safe, non-toxic by-
products. Furthermore, the role of microbes used for dye 
degradation is environmentally friendly as less chemical is used 
to clear the contaminated site. Besides, when less chemical is 
involved, lower energy is required for the bioremediation 
process, thus making it a cost-effective alternative to both 
chemical and physical decomposition process.  
 

The objective of this research is to model the degradation or 
the decolourization of Malachite Green dye by a bacterium using 
non-linear regression such as modified Logistic, modified 
Gompertz, modified logistics, modified Richards, modified 
Schnute, Baranyi-Roberts, Buchanan-3-phase, von Bertalanffy 
and the Huang models. This modelling will allow for more 
accurate parameters of decolourization to be obtained. The best 
model will be evaluated based on various statistical test such as 
the adjusted coefficient of determination (adjR2), root mean 
square error (RMSE), corrected Akaike Information Criterion 
(AICc), Hannan-Quinn Information Criterion (HQC), Bayesian 
Information Criterion (BIC), accuracy factor (AF) and bias factor 
(BF). 
 
MATERIALS AND METHODS 
 
Data acquisition 
Graphical data of a published work [15] from Figure 1 were 
electronically processed using WebPlotDigitizer 2.5 [16] which 
helps to digitize scanned plots into a table of data with good 
precision and reliability [17,18].  
 
Fitting of the data 
The data were fitted using a nonlinear regression on a 
CurveExpert Professional software (Version 1.6) that uses a 
Marquardt algorithm (Table 1). The algorithm which minimizes 
the sums of the square of the differences between values of the 
predicted and measure.  
 
Statistical analysis 
The root mean-square error or RMSE was calculated according 
to Eq. 1, where p is the number of parameters of the assessed 

model, Obi are the experimental data, Pdi is the values predicted 
by the model and n is the number of experimental data. 
 
The RMSE was calculated as folows,  
 

     (Eqn. 1) 
where  
 
n  number of experimental data  
Pdi   pvioleticted values by the model  
Obi  experimental data 
p   parameters number of the model 
 
As a general rule, those model that has a smaller number of the 
parameter corresponds in smaller RMSE value [19]. 
 
 
Table 1. Mathematical models are governing the decolorization rate used 
in this study. 
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Buchanan  
Three-phase 
linear model 
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Note: 
A= Decolorization lower asymptote; 
µm= maximum specific decolorizarion rate; 
v= affects near which asymptote maximum decolorization occurs. 
λ=lag time 
ymax= Decolorization upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
The lag time (h-1) or (d-1) can be calculated as h0=qmax 
 
R2 is commonly used as a measure of goodness of fit in both 
linear and nonlinear regression. However, the method does not 
provide unrestricted comparative analysis due to its disregard for 
model parameter counts. The quality of nonlinear models can be 
calculated using the following formula, which utilizes an 
adjustedR2 that accounts for the number of parameters in the 
models (Eqns. 2 and 3). 
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    (Eqn. 3) 
 
 
where  
 

is the total variance of the y-variable and RMS is the Residual 
Mean Square  
 
Based on information theory, the Akaike information criterion 
(AIC) evaluates models according to how well they fit data while 
also accounting for their level of complexity. When making a 
model selection, the one with the smallest AIC value wins. When 
the number of parameters in the study is low, a modified version 
of AIC called Akaike information requirements (AICc) is used 
[20]. A delta or difference of 5 indicates that the data with the 
smaller value is more likely to be accurate or correct, but the 
actual values themselves are unimportant. As the number of 
variables increases, the AIC value rises, indicating that the model 
is less parsimonious. When fitting experimental data, AIC 
discourages the use of more complex models (overfitting).. AICc 
is calculated using the following equation (Eqn. 4); 
 

  (Eqn. 4) 
 
Where 
 
n  number of data points   
p  parameter numbers of the model 
 
Commonly used in predicted microbiology for bacterial growth 
in food science, the Accuracy Factor (AF) and Bias Factor (BF) 
(Eqns. 5 and 6) are another goodness-of-fit of models [21]. The 
statistics calculates the perfect match between experimental and 
predicted values. As a rule, a BF value > 1.0 indicates a model 
which is fail-safe a value < 1.0 indicates a model that is fail-
dangerous. On the other hand, the AF is always ≥ 1.0, with 
precise models giving values nearing to 1.0. 
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Assesment of normality (Eqn. 7) for the residuals was carried out 
using the GraphPad Prism® 6 (Version 6.0, GraphPad Software, 
Inc., USA). The residual for the ith observation in the regression 
model can be mathematically represented as follows; 
 

       (Eqn. 7) 
 
Where the ith response from a given data set is denoted by yi while 
at each set of the ith observation, the vector for the explanatory 
variables is xi [22] 
 
 
Where the ith response from a given data set is denoted by yi while 
at each set of the ith observation, the vector for the explanatory 
variables is xi [22]. The normality tests carried out is based on the 
tests of Kolmogorov-Smirnov [23,24], Wilks-Shapiro [25] and 
the D'Agostino-Pearson omnibus K2 test [26]. 
 
 

 
 
 
 
RESULT AND DISCUSSION 
 
Decolourization kinetics 
Various primary models (Fig. 1) were utilized to fit the specific 
decolourisation rate, and most of them show visually acceptable 
fitting. Several models such as failed to converge and was 
omitted. One of the models, the modified Gompertz is very 
popular and has been used to model growth curve on xenobiotics 
including dyes as substrates [27–29]. The other models are rarely 
used in modelling dye degradation or decolorization. Only 
Huang, Baranyi-Roberts, modified Gompertz, modified Richards 
and modified Logistics were able to model the data while other 
models failed to converge and were omitted. The best model 
based on statistical analysis was Baranyi Roberts with the highest 
value for Adjusted Coefficient of Determination and the lowest 
values for RMSE, AICc, HQC and BIC and the closest value to 
1.0 for accuracy and bias factors. The Baranyi-Roberts fitted 
curve was found to conform to normality tests and is adequate to 
be used to fit the experimental data (Data not shown). The 
normality tests carried out shows that the model pass the 
normality tests with p >0.05 for all normality tests carried out 
[22]. Biodegradation of toxicants is just one of several situations 
aside from its common usage in food mcirobiology, where the 
Baranyi-Roberts model has proven useful for modeling microbial 
growth [30–36].  
 
 

 
Fig. 1. Fitting the effect of Malachite Green () dye on the 
decolourisation rate experimental data by Staphylococcus aureus with the 
modified Gompertz model (-).   
 

 
Fig. 2. Fitting the effect of Malachite Green () dye on decolurisation 
rate experimental data with Modified Gompertz model (-)  by 
Staphylococcus aureus.  
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Fig. 3. Fitting the effect of Malachite Green () dye on decolurisation 
rate experimental data with Modified Richards model (-) by 
Staphylococcus aureus. 
  
 

 
 
Fig. 4. Fitting the effect of Malachite Green () dye on decolourisation 
rate experimental data with Modified Logistics model (-) by 
Staphylococcus aureus. 
   
 

 
 
Fig. 5. Fitting the effect of Malachite Green () dye on decolourisation 
rate experimental data with Huong model (-) by Staphylococcus aureus.   
 

Important decolourisation rate parameters obtained in this 
study can be further utilized to gleam on the effect of substrate 
(Malachite Green) to the decolourization rate. It is observed from 
the literature search that the modelling on the effect of time on 
degradation or decolourisation rate for dye is rarely reported in 
the literature. Most often than not, these researchers transform 
the decolourisation profile into a linear form through the use of 
transformation method such as natural logarithm transformation 
to obtain the specific decolourization rate [37].  

 
 
Fig. 6. Fitting the effect of Malachite Green () dye on decolourisation 
rate experimental data with Baranyi model (-) by Staphylococcus aureus.   
 
Table 2. Statistical analysis of kinetic models. 
 

model p RMSE AdjR2 AICc BF HQC BIC AF 
Huang 4 0.325 0.982 24.51 1 -17.624 -15.163 1.019 
Baranyi-Roberts 4 0.116 0.997 8.0381 1 -34.105 -31.644 1.007 
Modified Gompertz 3 0.248 0.989 20.191 1.002 -21.951 -19.49 1.015 
Modified Richards 4 0.4049 0.969 83.687 0.993 -14.991 -11.915 1.025 
Modified Logistics 3 0.388 0.971 83.04 1.004 -15.638 -12.562 1.019 

Note: 
p number of parameters 
SSE  Sums of Square of Errors 
RMSE  Root Mean Square of Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 

 
Transforming an otherwise nonlinear curve into a linearized 

form disrupt the error structure and must be avoided [38,39]. To 
the best of our knowledge the Baranyi-Roberts model being the 
best model to fit the nonlinear curves of dye decolourisation is 
novel. In addition, the use of mathematical models allow another 
important parameter; the lag time to be obtained [40,41].  

 
Often growth on toxic xenobiotics including dye at high 

concentration increases the lag period as the cells try to offset the 
toxicity through various intrinsic mechanisms such as pumping, 
producing metabolites that can sequester the xenobiotics or often 
enzymes that can degrade the xenobiotics [42–44]. All of these 
activities require the expenditure of energy that is translated as 
an increase in the lag period [45]. Future bioremediation works 
will need to rely on mathematical modelling results such as in 
this study to improve remediation works. 

 
CONCLUSION 
 
Malachite Green is a toxic dye often used in aquaculture. Its 
bioremediation by a bacterium has been reported. The ability to 
accurately predict the rate of bioremediation using this bacterium 
relies upon the gathering of the accurate rate of decolourisation 
and a nonlinear regression of the curve needs to be carried out 
utilising available rate models. Hence, various primary models 
such as modified Logistic, modified Gompertz, modified 
logistics, modified Richards, modified Schnute, Baranyi-
Roberts, Buchanan-3-phase, von Bertalanffy and the Huang 
models were utilized to fit the specific decolourisation rate. 
Several models failed to converge and were omitted and only 
Huang, Baranyi-Roberts, modified Gompertz, modified Richards 
and modified Logistics were able to model the data while other 
models failed to converge and were omitted. The best model 
based on statistical analysis was Baranyi Roberts with the highest 
value for Adjusted Coefficient of Determination and the lowest 
values for RMSE, AICc, HQC and BIC and the closest value to 
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1.0 for accuracy and bias factors. The Baranyi-Roberts fitted 
curve was found to conform to normality tests and is adequate to 
be used to fit the experimental data. The parameters obtained 
from the Baranyi-Roberts model such as the maximum specific 
decolourisation rate is currently being used for secondary 
modelling of the effect of dye concentration on decolourization 
rate. 
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