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INTRODUCTION 
 
Heavy metals are increasingly being released into the 
environment as a byproduct of mining, electroplating, alloy 
preparation, pulp-paper, and fertilizer production, among other 
industrial processes. Heavy metal pollution has become a 
pressing issue because of the widespread accumulation of these 
elements in the food chain and the serious health concerns they 
cause to living organisms. Lead is a naturally occurring 
dangerous element that can be found all over the Earth's crust. 
Many countries' public health has suffered as a result of its 
pervasive use, which has polluted large swaths of land and 
exposed countless individuals. 
 

Major sources of environmental pollution include the mining, 
smelting, manufacturing, and recycling industries, as well as the 
persistent use of lead-based paint and aviation fuel in some 
countries. More than 75% of all lead is used in the creation of 
lead-acid car batteries. Pigments, paints, solder, stained glass, 
lead crystal glassware, ammunition, ceramic glazes, jewelry, 
toys, cosmetics, and traditional remedies are just some of the 
many other products that use lead. Drinking water may contain 
lead if the pipes it travels through are made of lead or if the pipes 
themselves were joined using lead-based solder. Currently, 
recycled lead accounts for the vast majority of lead used in 
international trade. Lead is especially dangerous for young 
children because of the lasting, devastating effects it can have on 
their health, particularly on the development of their brain and 
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 ABSTRACT 
Adults who are exposed to high levels of lead may develop hypertension and kidney damage. 
Lead exposure is dangerous for everyone, but it can have devastating effects on pregnant women 
and their babies. Methods such as membrane separation, ion exchange, precipitation, and 
biosorption are currently in use for the removal of lead pollution. Biosorption has the fewest 
negative aspects of these technologies due to its low operating costs, high efficiency at 
detoxifying low concentrations of toxicants, and small volume of disposal materials. The 
biosorption of the biosorption of lead (II) onto the activated carbon from Tridax procumbens  is 
remodeled using nonlinear regression and the optimal mode was determined by a series of error 
function assessments. The best kinetic model for adsorption of lead (II) was Pseudo-1st order with 
a reasonable difference in terms of corrected Akaike Information Criterion to the next best model, 
which was pseudo-2nd order, and followed by the Elovich. However,  the error function analyses 
especially the AICc was not conclusive in ranking the pseudo-1st order model as the best model 
due to the low (<5) absolute values of differences between the model. The pseudo-1st order kinetic 
constants obtained were qe (mg/g) of 6.181 (95% confidence interval from 5.009 to 7.352) and k1 
(per min) of 0.007 (95% confidence interval from 0.004 to 0.009). Nonlinear modeling enables 
the determination of a 95 percent confidence interval for the uncertainty range, which can be used 
in model comparison and discriminant analysis. 
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nervous system. Adults who are exposed to high levels of lead 
may develop hypertension and kidney damage. Lead exposure is 
dangerous for everyone, but it can have devastating effects on 
pregnant women and their babies. Anemia, hepatitis, 
encephalopathy, and nephritic syndrome are all conditions 
associated with lead levels in drinking water that are above the 
legal limit of 0.05 mg/L. As a result of its high biosorption 
capacity and selectivity, low cost, and low environmental risk, 
biosorption is a promising approach for the removal of heavy 
metals from wastewater. 
 

To fully grasp the biosorption process of toxicants, it is 
crucial to correctly assign the kinetics and isotherms of 
biosorption. Estimating uncertainty of the parameters of the 
kinetics, which are often displayed as a 95 percent confidence 
interval range, can be made more challenging by the linearization 
of a clearly nonlinear curve, which can cause problems on the 
error structure of the data [1]. During the process of data 
transformation required for linearization, error in the independent 
variable may also be introduced. Weighting of data points can 
also affect the fitted parameter values for the linear and nonlinear 
versions of the model [2]. In this study the published data from 
the biosorption of lead (II) onto the activated carbon from Tridax 
procumbens [3] is remodeled using nonlinear regression of 
several kinetic models (Table 1) and in the end, a series of error 
function evaluations identified the best possible setting. Because 
a linearized modeling version was proposed for the kinetics in the 
aforementioned publication, this modeling analysis was required. 
 
Table 1. Kinetic models and equation utilized in this study. 
 
Model Equation Ref 
Pseudo-1st order 𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝐾𝐾1𝑡𝑡) [4] 
Pseudo-2nd order 

𝑞𝑞𝑡𝑡 =
𝐾𝐾2𝑞𝑞𝑒𝑒2𝑡𝑡

(1 + 𝐾𝐾2𝑞𝑞𝑒𝑒𝑡𝑡)
 

[5] 

h value ℎ = 𝐾𝐾2𝑞𝑞𝑒𝑒2 [5] 
Elovich 𝑞𝑞𝑡𝑡 =

1
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

+
1

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
 [6] 

 
METHODS 
 
Data acquisition and fitting 
Data from Figure 3 from a published work [3] were digitized 
using the software Webplotdigitizer 2.5 [7].The accuracy of data 
digitized with this program has been verified [8,9]. The data were 
first converted to qt values and then nonlinearly regressed using 
the curve-fitting software CurveExpert Professional software 
(Version 1.6). 
 
Statistical analysis 
Commonly used statistical discriminatory methods such as 
corrected AICc (Akaike Information Criterion), Bayesian 
Information Criterion (BIC), Hannan and Quinn’s Criterion 
(HQ), Root-Mean-Square Error (RMSE), bias factor (BF), 
accuracy factor (AF) and adjusted coefficient of determination 
(R2). The RMSE was calculated according to Eq. (1),  [1], and 
smaller number of parameters is expected to give a smaller 
RMSE values. n is the number of experimental data, Obi and Pdi 
are the experimental and predicted data while p is the number of 
parameters. 
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    (Eqn. 1) 
 
 
 

As R2 or the coefficient of determination ignores the number of 
parameters in a model, the adjusted R2 is utilized to overcome 
this issue. In the equation (Eqns. 2 and 3), the total variance of 
the y-variable is denoted by 𝑆𝑆𝑦𝑦2 while RMS is the Residual Mean 
Square. 
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When it comes to evaluating data, the Akaike Information 
Criterion (AIC) uses principles from the field of information 
theory. It strikes a balance between a model's complexity and its 
goodness of fit [10]. To handle data having a high number of 
parameters or a smaller number of values corrected Akaike 
information criterion (AICc) is utilized [11]. The AICc is 
calculated as follows (Eqn. 4), where p signifies the quantity of 
parameters and n signify the quantity of data points. A model 
with a smaller value of AICc is deemed likely more correct [11].  
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  (Eqn. 4) 
 
Aside from AICc, Bayesian Information Criterion (BIC) (Eqn. 
5) is another statistical method that is based on information 
theory. This error function penalizes the number of parameters 
more strongly than AIC [12]. 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑘𝑘. ln (𝑛𝑛)    (Eqn. 5) 

 
A further error function method based on the information theory 
is the Hannan–Quinn information criterion (HQC) (Eqn. 6). The 
HQC is strongly consistent unlike AIC due to the ln ln n term in 
the equation [11]; 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛 × 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑘𝑘 × 𝑙𝑙𝑙𝑙(ln𝑛𝑛)  (Eqn. 6) 

 
Further error function analysis that originates from the work of 
Ross [13] are the Accuracy Factor (AF) and Bias Factor (BF). 
These error functions test the statistical evaluation of models for 
the goodness-of-fit but do not penalize for number of parameter 
(Eqns. 7 and 8). 
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RESULTS AND DISCUSSION 
 
The absorption kinetics data of biosorption isotherm experiment 
from a published work  [3] on the biosorption of lead (II) on the 
activated carbon from Tridax procumbens were analyzed using 
three models—pseudo-1st, pseudo-2nd and Elovich, and fitted 
using non-linear regression. The Elovich model was the poorest 
in fitting the curve based on visual observation (Figs. 1-6).  
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The optimal model was determined through the application of 
statistical analysis based on the root-mean-square error (RMSE), 
adjusted coefficient of determination (adjR2), accuracy factor 
(AF), bias factor (BF), Bayesian Information Criterion (BIC), 
corrected Akaike Information Criterion (AICc), and Hannan–
Quinn information criterion (HQC). 
 
 

 
 
Fig. 1. Kinetics of on the biosorption of lead (II) onto activated carbon 
from Tridax procumbens modelled using the Elovich model.  
 

 
Fig. 2. Kinetics of on the biosorption of lead (II) onto activated carbon 
from Tridax procumbens modelled using the pseudo-1st order model.  
 

 
Fig. 3. Kinetics of on the biosorption of lead (II) onto activated carbon 
from Tridax procumbens modelled using the pseudo-2nd order model.  
 

The best kinetic model for adsorption of lead (II) was 
Pseudo-1st ordernwith a reasonable difference in terms of 
corrected Akaike Information Criterion to the next best model, 
which was pseudo-2nd order, and followed by the Elovich (Table 
2). The error function analyses especially the AICc was not 
conclusive in ranking the pseudo-1st order model as the best 

model due to the low (<5) absolute values of differences between 
the model. The kinetic constants for all of the models are shown 
in Table 3. The pseudo-1st order kinetic constants obtained were 
qe (mg/g) of 6.181 (95% confidence interval from 5.009 to 7.352) 
and k1 (per min) of 0.007 (95% confidence interval from 0.004 to 
0.009). The h value, (mg/g.min) utilized to calculate the initial 
adsorption rate constant indicates the driving force to accelerate 
the diffusion of adsorbate from solution onto the adsorbent [14].  
 
Table 2. Error function analysis for the kinetic models. 
 
Model p RMSE R2 adR2 AICc BIC HQC AF BF 
Pseudo-1st order 2 0.360 0.961 0.948 -5.85 -16.25 -17.50 1.083 0.927 
Pseudo-2nd order 2 0.376 0.958 0.944 -5.06 -15.47 -16.71 1.083 0.929 
Elovich 2 0.381 0.957 0.943 -4.85 -15.25 -16.50 1.106 0.910 
 
Note: 
RMSE Root mean Square Error 
p no of parameters 
adR2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 
AICc  Adjusted Akaike Information Criterion 
BIC Bayesian Information Criterion  
HQC  Hannan–Quinn information criterion  
 
Table 3. Calculated constants for the kinetics models fitting the 
biosorption of lead (II) onto activated carbon from Tridax procumbens. 
 
Model Value 95% Confidence interval 
Pseudo-1st    
k1 (per min) 0.007 0.004 to 0.009 
qe (mg/g) 6.181 5.009 to 7.352 
Pseudo-2nd    
k2 (g/mg/min) 0.0010 0.0001 to 0.00094 
qe (mg/g) 9.411 6.636436 to 12.186386 
h (mg/g.min) 0.046 0.023 to 0.077 
Elovich   
Alpha 
(mg/g.min) 0.103 0.0835 to 0.122 
Beta (g/mg) 0.514 0.421 to 0.607 
 

Through the use of kinetic models, researchers have been 
able to analyze experimental data and gain insight into the 
sorption mechanism and potential rate controlling steps, such as 
chemical reaction and mass transport processes. These kinetic 
models incorporated not only the Elovich equation but also the 
pseudo-1st order and pseudo-2nd order equations. The initial 
adsorption rate (in mg/g min) and the surface coverage (in g/mg) 
are given by and respectively in the Elovich model. In the 
pseudo-1st order reaction, the adsorbate concentration is 
maintained at a constant saturation value. The adsorbate is 
adsorbed at a constant rate because its level is independent of the 
adsorbate concentration.  

 
Under the control of film diffusion, the rate is inversely 

proportional to the particle size, the distribution coefficient, and 
the film thickness. The rate-limiting step here is diffusion, which 
is not concentration or reactant-dependent, so we call it 
physisorption (physical exchange) [15–19]. If the reaction is 
governed by a pseudo-2nd order reaction, then chemisorption 
occurs because a chemical reaction is in charge of the rate-
controlling step. When the sorbate to sorbent ratio is small, the 
sorption kinetics is similar to a reversible second order reaction, 
while when it is larger, two competitive reversible second order 
reactions take place [20]. However, additional proofs, such as 
evaluation results of the activation energies via experiment 
repetition at different temperatures and checking the process 
rates dependences to the sizes of the adsorbent particle, should be 
provided to confirm the mechanism is a chemisorption [21]. 
 

The pseudo-1st order model has also been reported to be the 
best model for lead(II) sorption onto coco-peat biomass [22] and 
in several other metal sorption works [23–30]. On the other hand, 
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the pseudo-2nd order kinetics model has been reported to be the 
best model in several lead sorption studies such as lead(II) 
sorption by Cephalosporium aphidicola [31], on sesame leaf [32] 
and on Spirodela polyrhiza [33] to name a few. In general, the 
pseudo-2nd order was the best model for metal sorption such as 
the biosorption of Cr(VI) to magnetic iron oxide nanoparticle-
multi-walled carbon nanotube [34], Cu(II) adsorption onto 
functionalized cellulose beads from Tunisian almond (Prunus 
dulcis) shell [35] and the sorption of Zn(II) by Streptomyces 
ciscaucasicus [36] and other heavy metals [20,24,37–43], 
indicating that the pseudo-2nd model is routinely reported to be 
better than the pseudo-1st order in fitting kinetics of xenobiotics 
sorption although this discrepancy has been attributed to the 
mathematically versatile properties of the pseudo-2nd order 
model [2,16,44]. 
 
CONCLUSION 
 
In conclusion, the biosorption of the biosorption of lead (II) onto 
activated carbon from Tridax procumbens was successfully 
modelled using three models—pseudo-1st, pseudo-2nd and 
Elovich, and fitted using non-linear regression. Pseudo-1st order 
was the best kinetic model for lead (II) adsorption, with a 
significant difference in corrected Akaike Information Criterion 
between it and the next best model, pseudo-2nd order, and then 
the Elovich. Due to the low (5) absolute values of differences 
between the models, the error function analyses, especially the 
AICc, were unable to conclusively rank the pseudo-1st order 
model as the best model. Modelling using a nonlinear approach 
allows for the calculation of uncertainty range in terms of 95% 
confidence interval that would be useful for model comparison 
and discriminant in future studies. 
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