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Mathematical modeling of physical, chemical or biological data could help the investigator to 

explain a phenomenon observed based on physical, chemical or biological mechanisms. The 

model could also be used to predict or forecast future behavior, simulate a hypothetical event or 

input and design better experiments. Previously, we demonstrated that the Baranyi-Roberts 

growth kinetics is the best model using the ordinary least squares method for the growth of the 

algae Dunaliella tertiolecta compared to other models such as modified logistic, modified 

Gompertz, modified Richards, modified Schnute, Baranyi-Roberts, Von Bertalanffy, Huang 

and the Buchanan three-phase linear model. The ordinary least squares method relies heavily on 

several important assumptions such as residuals conformation to normal distribution, does not 

have outliers, is truly random, of equal variance (homoscedastic) and does not show 

autocorrelation. If all of these assumptions are satisfied, the test is said to be robust. In this 

work we perform statistical diagnosis test for the adequacy of the model to satisfy these 

requirements.  

 

 

INTRODUCTION 
 

In biotechnology, a mathematical model could help in 

understanding the basis behind a biological process and predicting 

yield and cellular growth kinetics during a bioprocess event. A 

mathematically-based model is not equivalent to a theory or a 

hypothesis since models could not be verified directly through 

experiments [1]. Algae, similar to microbial growth often shows 

growth with several phases where the specific growth rate starts at 

the value of zero. This is followed by acceleration to a maximal 

value (µmax) for a given period of time, resulting in what is called 

the lag time (λ). Finally the growth curves exhibit a final phase 

where the rate decreases and eventually reaches zero or an 

asymptote (a). The growth phases usually resulted in a sigmoidal  

 

curve [2]. The sigmoidal curve can be fitted by various 

mathematical functions such as Gompertz, logistics, von 

Bertalanffy, Buchanan and Baranyi-Robetrs. Previously we 

successfully modelled the sigmoidal growth profile of the algae 

Dunaliella tertiolecta using the non-linear regression model of 

Baranyi-Roberts to fit the experimental data and obtain parameter 

constants [3]). The method of mathematically fitting the non linear 

curve is through the use of ordinary least squares method that 

relies heavily on the residuals for the curve to be normally 

distributed of equal variance (homoscedastic), random and does 

not show autocorrelation [4–8]. In order for these assumption to 

be met we perform statistical diagnosis tests such as the 

Kolmogorov-Smirnov, wilks-shapiro and d'agostino-Pearson tests 

for normality (normal or gaussian distribution), the Wald–

         
 

 

 

ASIAN JOURNAL OF PLANT BIOLOGY  

Website: http://journal.hibiscuspublisher.com/index.php/AJPB 

 



Asian Journal of Plant Biology, 2014, Vol 2, No 2, 70-74 

 

 

- 71 - 

Wolfowitz runs test for detecting residual nonrandomness, 

Durbin-Watson test for detecting autocorrelation.  

 

 

METHODOLOGY 

Data were acquired from the works of Chen et al. from Figure 4a 

[9]. the effect of different light intensity on the growth of 

Dunaliella tertiolecta was modelled using the Baranyi-Roberts 

model (Fig. 1) as before to obtain residuals for the regression.  
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Fig 1. Growth curves of Dunaliella tertiolecta fitted by the Baranyi-

Roberts model. The optical density was transformed into natural 

logarithm. 

Normality test 

 
Residuals from the Baranyi-Roberts model were subjected to the 

normality tests. Two ways to check for normality are through 

graphical and numerical means. Graphical methods such as the 

normal quantile–quantile (Q-Q) plots, histograms or box plots are 

the simplest and easiest way to assess normality of data. Three 

normality tests- Kolmogorov-Smirnov [7,10] Wilks-Shapiro [11] 

and the D'Agostino-Pearson omnibus K2 test [12] were used in 

assessing normality of the residuals. The detail mathematical basis 

of these normality test statistics is extensive and is available in the 

literature. The normality tests were carried out using the GraphPad 

Prism® 6 (Version 6.0, GraphPad Software, Inc., USA). 

 

Runs test 

 

The runs test [13] was carried out to the residuals of the regression 

in order to detect nonrandomness.  This could detect a systematic 

deviation of over or under estimation sections of the curve when 

using a specific model [14]. The runs test look at the sequence of 

the residuals that are usually positive and negative. A good runs is 

usually signifies by alternating or a balance number of positive 

and negative residual values. The number of runs of sign is 

usually expressed in the form of a percentage of the maximum 

number possible. The runs test calculates the probability for the 

presence of too many or too few runs of sign. The presence of too 

many of a run sign could indicate the presence of negative serial 

correlation whilst the presence of too few runs could indicate a 

clustering of residuals with the same sign or the presence of 

systematic bias. 

 

The test statistic is 

 

H0=  the sequence was produced randomly 

Ha= the sequence was not produced randomly 

sR
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Where Z is the test statistic,  is the expected number of runs, R 

is the observed number of runs and sR is the standard deviation of 

the runs. The computation of the values of  and sR (n1 is 

positive while n2 is negative signs) is as follows; 
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As an example  

 

Test statistic: Z = 3.0 

Significance level: α = 0.05 

Critical value (upper tail): Z1-α/2 = 1.96 

Critical region: Reject H0 if Z > 1.96 

Since the test statistic value (Z) is larger than the critical value 

then the null hypothesis is rejected at the 0.05 significance level or 

the sequence was produced in a non random manner. 

 

The Durbin-Watson test 

 
Nonlinear regression normally uses the assumption that data 

points do not depend on each other or the value of a data point is 

not dependent on the value of preceding or proceeding data points. 

Autocorrelation amongst data can occur due to events such as 

temperature drift during time measurements or an overused 

tungsten lamp in a spectrophotometer. If one were to count the 

number of animals per year in a given area the data would be 

highly autocorrelated and nonindependence as the number of 

animals in a current year would be highly dependent upon the 

number of animals in the previous year [15]. The Durbin–Watson 

statistic calculates the level of significance according to the 

method outlined by Draper and Smith [13].  
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As usual the hypothesis H0: ρ= 0 versus the alternative H1: ρ 

> 0 is tested. The statistic is approximately equal to 2(1− p). The 

Durbin-Watson test statistic equals 2 when the ρ value is zero 

while a ρ value of one equals a Durbin-Watson test statistic of 0. 

Non-autocorrelation is indicated by a d value near 2 while a value 
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towards 0 indicates positive autocorrelation. Negative 

autocorrelation is indicated by d values nearing 4.  

 

The null hypothesis should be rejected for a low value of the 

Durbin-Watson test statistic indicating significant autocorrelation.  

Unlike the t- or z-statistics, the distribution of the Durbin-Watson 

test statistic is not available for ρ-value associated with d and 

tables must be used in the hypothesis testing. 

 

The decision rule for the Durbin-Watson bounds test is 

• if d > upper bound, fail to reject the null hypothesis of no serial 

correlation, 

• if d < lower bound, reject the null hypothesis and conclude that 

positive autocorrelation is 

present, 

• if lower bound < d < upper bound, the test is inconclusive. 

 

 

RESULTS 

 
The fit of a statistical model can be diagnosed accurately using 

tests that use residuals. Residuals are the difference between a 

predicted and observed quantity using a particular mathematical 

model. The rule of thumb is that the larger the differenced 

between the predicted and observed values, the poorer the model.  

 

Plot of residuals (observed-predicted) were checked and 

there were no evidence of a trend and the residuals appears to be 

randomly distributed. The normal probability Q-Q plot of 

residuals for the Baranyi-Roberts model was almost in a straight 

line and appears to show no underlying pattern (Fig. 2). The 

residual plot (Fig. 3) and the resulting histogram overlaid with the 

resulting normal distribution curve (Fig. 4) indicated the residuals 

were truly random and the model used was appropriately fitted.  

 

 

Graphical diagnostic of residuals normality 
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Fig 2. Normal Q-Q plot for the observed sample against theoretical 

quantiles. 
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Fig. 3. Residual plot for the Baranyi-Roberts model. 
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Fig. 4. Histogram of residual for the Baranyi-Roberts model overlaid with 

a normal distribution (mean 0.0140 and standard deviation 0.053). 

 

 

All of the normality tests used showed that the residuals are 

normally distributed (Table 1). The shape of the distribution 

calculated is dependent upon the number of bins and samples 

examined. The Kolmogorov-Smirnov statistic is a non-parametric 

numerical test that compares the cumulative frequency of 

residuals. It calculates the agreement between the model and 

observed values. It could also be used as a measure between two 

series of observation. The p value is calculated for the difference 

between two cumulative distributions and sample size [7,10]. In 

the Wilks-Shapiro test a W2 statistic is calculated based on the 

expected values of the order statistics between identically-

distributed random variables and their independent covariance and 

the standard normal distribution, respectively. If the test statistics 

value-W2 is high, then the agreement is rejected. In the 

D'Agostino-Pearson normality test, the skewness and kurtosis of 

the distribution is computed as a method to quantify the difference 

between the sample distributions to a normal distribution. A p-

value from the sum of these discrepancies is then computed. The 

most often form of the D'Agostino-Pearson normality tests is the 

omnibus K2 test as D'Agostino developed several normality tests. 
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Table 1. Numerical normality test for the residual from the Baranyi-

Roberts model. 

 

Normality tests 

 

Diagnostic 

 

D'Agostino & Pearson omnibus   

K2 0.2541 

P value 0.8807 

Passed normality test (alpha=0.05)? Yes 

P value summary ns 

  

Shapiro-Wilk  

W 0.9842 

P value 0.9939 

Passed normality test (alpha=0.05)? Yes 

P value summary ns 

  

Kolmogorov-Smirnov  

KS distance 0.09633 

P value > 0.1000 

Passed normality test (alpha=0.05)? Yes 

P value summary ns 

  

Skewness -0.1046 

Kurtosis 0.2944 

 

 

Runs test 

 
From Table 2, the number of runs was 13, the expected number of 

runs under the assumption of randomness was 7.461538, 

indicating the series of residuals had adequate runs. The z-value 

indicates how many standard errors the observed number of runs 

is below the expected number of runs, the corresponding p-value 

indicate how extreme this z-value is. The interpretation is the 

same like other o-values statistics. If the p-value is less than 0.05 

then the null hypothesis that the residuals are indeed random can 

be rejected. Since the p-value was greater than 0.05, therefore the 

null hypothesis is not rejected indicating no convincing evidence 

of non-randomness of the residuals and they do represent noise.  

 
Table 2. Runs test for randomness. 

 

 

Runs test Residual data set 

Observations 8 

Below mean 7 

Above mean 6 

No of runs 13 

E(R) 7.461538 

Var(R) 2.940828 

StDev(R) 1.714884 

Z-value 0.313993 

p-value 0.623237 

 

 
The runs test calculates the probability for the presence of too 

many or too few runs of sign. The presence of too many of a run 

sign could indicate the presence of negative serial correlation 

whilst the presence of too few runs could indicate a clustering of 

residuals with the same sign or the presence of systematic bias. 

The runs test is an important tool in nonlinear regression to detect 

nonrandomness of the residuals [13]. The runs test could detect 

systematic deviation of the curve such as over or under estimation 

of the sections when using a specific model. The runs test look at 

the sequence of the residuals that are usually positive and 

negative. A good runs is usually signifies by alternating or a 

balance number of positive and negative residual values. The 

number of runs of sign is usually expressed in the form of a 

percentage of the maximum number possible [14].  

 

Durbin-Watson test of autocorrelation 

 
Serial correlation of residuals was examined further with the 

Durbin–Watson statistic (DW) [13]. The DW is used to test 

whether a model has been successful in describing the underlying 

trend. Autocorrelation, also known as serial correlation, is the 

cross-correlation of a signal with itself. Informally, it is the 

similarity between observations as a function of the time lag 

between them. It is a mathematical tool for finding repeating 

patterns, such as the presence of a periodic signal obscured by 

noise. Because most regression problems involving time series 

data exhibit positive autocorrelation. Autocorrelation amongst 

data can occur due to events such as temperature drift during time 

measurements or an overused tungsten lamp in a 

spectrophotometer. If one were to count the number of animals 

per year in a given area the data would be highly autocorrelated 

and nonindependence as the number of animals in a current year 

would be highly dependent upon the number of animals in the 

previous year [15]. 

 

The value of the Durbin-Watson statistics d = 

0.0760/0.0367=2.0694. As usual the hypothesis H0: ρ= 0 versus 

the alternative H1: ρ > 0 is tested. The statistic is approximately 

equal to 2(1− p). The Durbin-Watson test statistic equals 2 when 

the ρ value is zero while a ρ value of one equals a Durbin-Watson 

test statistic of 0. Non-autocorrelation is indicated by a d value 

near 2 while a value towards 0 indicates positive autocorrelation. 

Negative autocorrelation is indicated by d values nearing 4. The 

null hypothesis should be rejected for a low value of the Durbin-

Watson test statistic indicating significant autocorrelation.  Unlike 

the t- or z-statistics, the distribution of the Durbin-Watson test 

statistic is not available for ρ-value associated with d and tables 

must be used in the hypothesis testing. The upper critical value dU 

is 1.826 while the lower critical value dL is 0.294. Since d was 

larger than the upper critical value then the null hypothesis is not 

rejected i.e. there appears to be no evidence of autocorrelation.  

 

In conclusion, various tests for the residuals used in this work 

has indicated that the use of the Baranyi-Roberts model in fitting 

of the growth curve of an algae shows adequate statistics strength 

based on the diagnostics of the residuals. Many publications 

negate statistical diagnosis of the model they used and the data 

may have violated normal distribution- an important requirement 

for all of the parametric statistical evaluation methods to chose a 

test such as Pearson’s correlation coefficient either normal or 

adjusted, root mean square analysis, F-test and t-test etc. 
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Statistical diagnosis allows a model used and the underlying 

statistical assumptions used to be robust. Checking these 

assumptions would allow the researcher to make sure that an 

analysis meets the associated assumptions in avoidance of the 

Type I and II errors. In the event that the dignostic tests shows that 

the residuals violated normality, shows autocorrelation or the 

residuals indicate a trend, then various treatments such as 

nonparametric analysis or changing to a different model should 

remedy the problem. 
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