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Nonlinear regression of a data and its subsequent statistical analysis relies on the facts that the 

residuals (difference between observed and predicted data) followed a normal or Gaussian 

distribution, no autocorrelation and are free of outliers. Previously, we demonstrated that the 

Buchanan- three phase growth kinetics is the best model using the ordinary least squares 

method for the growth of the algae Chlorella vulgaris compared to other models such as 

modified logistic, modified Gompertz, modified Richards, modified Schnute, Baranyi-Roberts, 

Von Bertalanffy, Huang and the Buchanan three-phase linear model. If all of these assumptions 

are satisfied, the test is said to be robust. In this work we perform statistical diagnostics to the 

residuals and discovered the presence of an outlier that allows the residuals to be normally 

distributed and satisfy other diagnostic tests after its removal. 

 

INTRODUCTION 
 

The growth of algae is similar to microbial growth in that they 

often show growth with several phases. The initial phase is where 

the specific growth rate starts at the value of zero. Then this is 

followed by what is called the lag time (λ) that lasts for a given 

period of time before accelerating to a maximal value (µmax). 

Finally the growth curves exhibit a final phase where the rate 

decreases and eventually reaches zero or an asymptote (A) . A 

mathematical model could help in understanding the basis behind 

kinetics of the algae growth and predicting yield and other 

secondary kinetics evaluation . The sigmoidal curve can be fitted 

by various mathematical functions such as Gompertz, logistics, 

von Bertalanffy, Buchanan and Baranyi-Roberts [6–9]. Previously 

we successfully modelled the sigmoidal growth profile of the 

algae Chlorella vulgaris using the non-linear regression model of 

Buchanan- three phase to fit the experimental data and obtain 

parameter constants. The method of mathematically fitting the non 

linear curve is through the use of ordinary least squares method 

that relies heavily on the residuals for the curve to be normally 

                                                                                                                                 

                                                                                                       

                                                                                                    

distributed of equal variance (homoscedastic), random and does 

not show autocorrelation [10]. In addition the residuals must be 

tested first for the presence of outliers (at 95 or 99% of 

confidence) using the Grubb's test in order for these assumption to 

be met [11]. We perform statistical diagnosis tests such as the 

Kolmogorov-Smirnov, Wilks-Shapiro and D'Agostino-Pearson 

tests for normality (normal or Gaussian distribution), the Wald–

Wolfowitz runs test for detecting residual nonrandomness and 

Durbin-Watson test for detecting autocorrelation.  

METHOD 

Data were acquired from the works of Dewan et al. [1] from 

Figure 6A showing Chlorella vulgaris growth profile starting 

from one cell per droplet. The growth of Chlorella vulgaris was 

modelled using the Buchanan- three phase model (Fig. 1) as 

before to obtain residuals for the regression.  
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Fig 1. Growth curves of Chlorella vulgaris fitted by the Buchanan 

three-phase model.  

Grubbs’ Statistic 
 

Data distortions by a single data point either the mean or a single 

data point from a triplicate can lead to gross error in the fitting of 

a nonlinear curve. Checking for outlier is thus an important part of 

curve fitting. Grubbs test is used to detect outlier in univariate 

environment and the data is assumed to be normally distributed 

[11]. The test can be applied to the maximal or minimal observed 

data from a Student’s t distribution (Equation 1) and to test for 

both data simultaneously (Equation 2). 

 

 

Normality test 
 

Residuals from the Buchanan- three phase model were subjected 

to three normality tests- Kolmogorov-Smirnov [12,13], Wilks-

Shapiro [14] and the D'Agostino-Pearson omnibus K2 test [15]. 

Two ways to check for normality are through graphical and 

numerical means. Graphical methods such as the normal quantile–

quantile (Q-Q) plots, histograms or box plots are the simplest and 

easiest way to assess normality of data. The detail mathematical 

basis of these normality test statistics is extensive and is available 

in the literature [10]. The normality tests were carried out using 

the GraphPad Prism® 6 (Version 6.0, GraphPad Software, Inc., 

USA). 

Runs test 

 
This test was carried out to the residuals of the regression in order 

to detect nonrandomness [16].  This could detect a systematic 

deviation of over or under estimation sections of the curve when 

using a specific model [10]. The runs test look at the sequence of 

the residuals that are usually positive and negative. A good runs is 

usually signifies by alternating or a balance number of positive 

and negative residual values. The number of runs of sign is 

usually expressed in the form of a percentage of the maximum 

number possible. The runs test calculates the probability for the 

presence of too many or too few runs of sign. The presence of too 

many of a run sign could indicate the presence of negative serial 

correlation whilst the presence of too few runs could indicate a 

clustering of residuals with the same sign or the presence of 

systematic bias. 

The test statistic is 

H0=  the sequence was produced randomly 

Ha= the sequence was not produced randomly 

sR
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Z
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Where Z is the test statistic,  is the expected number of runs, R 

is the observed number of runs and sR is the standard deviation of 

the runs. The computation of the values of  and sR (n1 is 

positive while n2 is negative signs) is as follows; 
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As an example  

Test statistic: Z = 3.0 

Significance level: α = 0.05 

Critical value (upper tail): Z1- α/2 = 1.96 

Critical region: Reject H0 if Z > 1.96 

Since the test statistic value (Z) is larger than the critical value 

then the null hypothesis is rejected at the 0.05 significance level or 

the sequence was produced in a non random manner. 
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The Durbin-Watson test 
 

The Durbin–Watson statistic calculates the level of significance 

according to the method outlined by Draper and Smith [16]. 

Nonlinear regression normally uses the assumption that data 

points do not depend on each other or the value of a data point is 

not dependent on the value of preceding or proceeding data points. 

Autocorrelation amongst data can occur due to events such as 

temperature drift during time measurements or an overused 

tungsten lamp in a spectrophotometer. If one were to count the 

number of animals per year in a given area the data would be 

highly autocorrelated and nonindependence as the number of 

animals in a current year would be highly dependent upon the 

number of animals in the previous year [17].  

∑

∑

=

=
− 






 −
=

T

t

t

T

t

tt

e

ee

d

1

^
2

2

2

^

1

^

   (6) 

As usual the hypothesis H0: ρ = 0 versus the alternative 

H1: ρ > 0 is tested. The statistic is approximately equal to 2(1− p). 

The Durbin-Watson test statistic equals 2 when the ρ value is zero 

while a ρ value of one equals a Durbin-Watson test statistic of 0. 

Non-autocorrelation is indicated by a d value near 2 while a value 

towards 0 indicates positive autocorrelation. Negative 

autocorrelation is indicated by d values nearing 4.  

The null hypothesis should be rejected for a low value 

of the Durbin-Watson test statistic indicating significant 

autocorrelation.  Unlike the t- or z-statistics, the distribution of the 

Durbin-Watson test statistic is not available for ρ-value associated 

with d and tables must be used in the hypothesis testing. 

The decision rule for the Durbin-Watson bounds test is 

• if d > upper bound, fail to reject the null hypothesis of no serial 

correlation, 

• if d < lower bound, reject the null hypothesis and conclude that 

positive autocorrelation is present, 

• if lower bound < d < upper bound, the test is inconclusive. 

RESULTS 

The fit of a statistical model can be diagnosed accurately using 

tests that use residuals. Residuals are the difference between a 

predicted and observed quantity using a particular mathematical 

model. The rule of thumb is that the larger the differenced 

between the predicted and observed values, the poorer the model.  

Plot of residuals (observed-predicted) were checked and 

the analysis showed that the data were not randomly distributed 

for all tests (Table 1). This could indicate the presence of an 

outlier in the residual. The Grubbs’ test was applied in order to 

identify the outlier(s). The Grubbs’ test statistic identifies the 

largest absolute deviation from the sample mean in units of the 

sample standard deviation [11]. The Grubbs’ test identify an 

outlier for the residual data 0.05521 at a significance level of 5% 

(α=5%). The presence of this outlier was graphically indicated 

using the residual plot (Fig. 2).  

Table 1. Numerical normality test for the residual from the 

Buchanan- three phase model. 

Normality test Analysis 

D'Agostino & Pearson omnibus  

normality test 

 

K2 21.06 

P value < 0.0001 

Passed normality test (alpha=0.05)? No 

P value summary **** 

Shapiro-Wilk normality test  

W 0.5707 

P value < 0.0001 

Passed normality test (alpha=0.05)? No 

P value summary **** 

KS normality test  

KS distance 0.4351 

P value < 0.0001 

Passed normality test (alpha=0.05)? No 

P value summary **** 

 

 

        

 

 

 

 

 

        Fig. 2. Residual plot for the Buchanan- three phase model. 
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The outlier identified by the Grubb’s test was and the same tests 

were again applied in order to assess the normality. The results are 

presented in Table 2. The removal of this outlier as indicated 

using the residual plot shows uniform random distribution (Fig. 

3). 

Table 2. Numerical normality test for the residual from the 

Buchanan- three phase model after removal of an outlier. 

Normality tests Diagnostic 

D'Agostino & Pearson omnibus normality 

test  

K2 N too small 

P value  

Passed normality test (alpha=0.05)?  

P value summary  

Shapiro-Wilk normality test  

W 0.9230 

P value 0.4932 

Passed normality test (alpha=0.05)? Yes 

P value summary ns 

KS normality test  

KS distance 0.1873 

P value > 0.1000 

Passed normality test (alpha=0.05)? Yes 

P value summary ns 

Skewness -0.2936 

Kurtosis -0.8828 
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Fig. 3. Residual plot for the Buchanan- three phase model after 

removal of an outlier. 

The normal probability Q-Q plot of residuals for the Buchanan- 

three phase model was almost in a straight line and appears to 

show no underlying pattern (Fig. 4). The resulting histogram 

overlaid with the resulting normal distribution curve (Fig. 5) 

indicates the residuals were truly random and the model used was 

appropriately fitted.  

 

Graphical diagnostic of residuals normality 
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Fig 4. Normal Q-Q plot for the observed sample against 

theoretical quantiles. 

0.0

1.0

2.0

3.0

4.0

5.0

Residual

F
re

q
u

e
n

c
y

-0.005     -0.004     -0.003     -0.002     -0.001     0     0.001     0.002     0.003     0.004     0.005

 

Fig. 5. Histogram of residual for the Buchanan- three phase model 

overlaid with a normal distribution (mean 0.000227 and standard 

deviation 0.003344). 

After the removal of the outlier, all of the normality tests used 

showed that the residuals were normally distributed (Table 2). 

Number of bins and samples examined determined the shape of 

the distribution. In the Wilks-Shapiro test, a W2 statistic is 

calculated based on the expected values of the order statistics 

between identically-distributed random variables and their 

independent covariance and the standard normal distribution, 

respectively. If the test statistics value-W2 is high, then the 

agreement is rejected [14]. The Kolmogorov-Smirnov statistic is a 

non-parametric numerical test that compares the cumulative 

frequency of residuals. It calculates the agreement between the 

model and observed values. It could also be used as a measure 

between two series of observation. The p value is calculated for 

the difference between two cumulative distributions and sample 
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size [12,13]. The skewness and kurtosis of the distribution is 

computed as a method to quantify the difference between the 

sample distributions to a normal distribution In the D'Agostino-

Pearson normality test method. A p-value from the sum of these 

discrepancies is then computed. The most often form of the 

D'Agostino-Pearson normality tests is the omnibus K2 test as 

D'Agostino developed several normality tests [15]. 

Runs test 
 

The runs test showed that the number of runs was 7, while the 

expected number of runs under the assumption of randomness was 

4.428 (Table 3), indicating the series of residuals had adequate 

runs. The Z-value indicates how many standard errors the 

observed number of runs is below the expected number of runs, 

the corresponding p-value indicate how extreme this z-value is. 

The interpretation is the same like other p-values statistics. If the 

p-value is less than 0.05 then the null hypothesis that the residuals 

are indeed random can be rejected. Since the p-value was greater 

than 0.05, therefore the null hypothesis is not rejected indicating 

no convincing evidence of non-randomness of the residuals and 

they do represent noise [10].  

The presence of too many of a run sign could indicate the 

presence of negative serial correlation whilst the presence of too 

few runs could indicate a clustering of residuals with the same 

sign or the presence of systematic bias. The runs test could detect 

Table 3. Runs test for randomness. 

Runs test Residual data set 

Observations 5 

Below mean 3 

Above mean 4 

No of runs 7 

E(R) 4.428571 

Var(R) 1.387755 

StDev(R) 1.17803 

Z-value 0.485071 

p-value 0.686187 

 

systematic deviation of the curve such as over or under estimation 

of the sections when using a specific model. The runs test 

calculates the probability for the presence of too many or too few 

runs of sign. The runs test is an important tool in nonlinear 

regression to detect nonrandomness of the residuals [16]. The runs 

test look at the sequence of the residuals that are usually positive 

and negative. A good runs is usually signifies by alternating or a 

balance number of positive and negative residual values. The 

number of runs of sign is usually expressed in the form of a 

percentage of the maximum number possible [10].  

Durbin-Watson test of autocorrelation 
 

The Durbin–Watson statistic (DW) can calculate for the presence 

of serial correlation of residuals. Autocorrelation, also known as 

serial correlation, is the cross-correlation of a signal with itself. 

The DW is used to test whether a model has been successful in 

describing the underlying trend. Informally, it is the similarity 

between observations as a function of the time lag between them. 

It is a mathematical tool for finding repeating patterns, such as the 

presence of a periodic signal obscured by noise. This is because 

most regression problems involving time series data exhibit 

positive autocorrelation.  

Autocorrelation amongst data can occur due to events such as 

temperature drift during time measurements or an overused 

tungsten lamp in a spectrophotometer. If one were to count the 

number of animals per year in a given area the data would be 

highly autocorrelated and nonindependence as the number of 

animals in a current year would be highly dependent upon the 

number of animals in the previous year [10,16,17]. 

The value of the Durbin-Watson statistics d = 

0.000195/0.000067=2.893. As usual the hypothesis H0: ρ= 0 

versus the alternative H1: ρ > 0 is tested. The statistic is 

approximately equal to 2(1− p). The Durbin-Watson test statistic 

equals 2 when the ρ value is zero while a ρ value of one equals a 

Durbin-Watson test statistic of 0. Non-autocorrelation is indicated 

by a d value near 2 while a value towards 0 indicates positive 

autocorrelation. Negative autocorrelation is indicated by d values 

nearing 4. The null hypothesis should be rejected for a low value 

of the Durbin-Watson test statistic indicating significant 

autocorrelation.  Unlike the t- or z-statistics, the distribution of the 

Durbin-Watson test statistic is not available for ρ-value associated 

with d and tables must be used in the hypothesis testing. The 

upper critical value dU is 2.102 while the lower critical value dL is 

0.229. Since d was larger than the upper critical value then the 

null hypothesis is not rejected i.e. there appears to be no evidence 

of autocorrelation.  

In conclusion, various tests for the residuals used in this work 

has indicated that the use of the Buchanan- three phase model in 

fitting of the growth curve of an algae shows adequate statistics 

strength based on the diagnostics of the residuals. It is reported 

that many publications did not elaborate further on the use of 

statistical diagnosis of the residuals from the model used. This 

could results in data violating the Gaussian or normal distribution. 

This assumption is an important requirement for many of the 

parametric statistical evaluation methods used in non linear 

regression. Methods such as the Pearson’s correlation coefficient 

either normal or adjusted, root mean square analaysis, F-test and t-

test rely on the residuals to be normally distributed. These 

assumptions could avoid errors of the Type I and II errors. 

Furthermore, in the event that the dignostic tests shows that the 

residuals violated some of the assumptions various nonparametric 

treatments could be used or changing to a different model can in 

practice remedy the situation. 
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